
1

NASA Technical Memorandum 110292

Asymptotic Waveform Evaluation(AWE)
Technique for Frequency Domain
Electromagnetic Analysis

C. R. Cockrell and F.B. Beck
NASA Langley Research Center, Hampton, Virginia

November 1996

National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23681-0001



2

CONTENTS

Abstract 2

List of Symbols 3

1.0 Introduction 5

2.0 Derivation of AWE moments 6

3.0 Numerical Results 9

4.0 Concluding Remarks 10

References 11



3

Abstract

The Asymptotic Waveform Evaluation(AWE) technique is applied to a generalized
frequency domain electromagnetic problem. Most of the frequency domain techniques in
computational electromagnetics result in a matrix equation, which is solved at a single frequency.
In the AWE technique, the Taylor series expansion around that frequency is applied to the matrix
equation. The coefficients of the Taylor’s series are obtained in terms of the frequency derivatives
of the matrices evaluated at the expansion frequency. The coefficients hence obtained will be used
to predict the frequency response of the system over a frequency range. The detailed derivation of
the coefficients (called ‘moments’) is given along with an illustration for electric field integral
equation (or Method of Moments) technique. The Radar Cross Section(RCS) frequency response
of a square plate is presented using the AWE technique and is compared with the exact solution at
various frequencies.
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List of Symbols

Del operator

Kronecker delta defined in equation (12)

Free space intrinsic impedance 377

AWE Asymptotic Waveform Evaluation

Impedance/Admittance matrix of order NXN evaluated at

Impedance/Admittance matrix of order NXN evaluated at

nth derivative of  with respect to ;

Inverse of matrixA

Excitation vector of order N evaluated at

Excitation vector of order N evaluated at

nth derivative of  with respect to ;

ds Surface integration

EFIE Electric Field Integral Equation

Incident electric field

The coefficient vector for current distribution in method of moments for
EFIE implementation

Vector basis function for the current distribution

j

∇

δqo

ηo Ω

A ko( ) ko

A k( ) k

A
n( )

k( ) A k( ) k
k

n

n

d

d
A k( )

A
1–

.( )

b ko( ) ko

b k( ) k

b
n( )

k( ) b k( ) k
k

n

n

d

d
b k( )

Ei

I k( )

J

1–



5
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1. Introduction

Frequency domain numerical techniques such as Method of Moments(MoM), Finite
Element Method(FEM) and hybrid FEM/MoM have become popular over the last few years due
to their flexibility to handle arbitrarily shaped objects and complex materials[1,2]. One of the
disadvantages of frequency domain techniques, however is the computational cost involved in
obtaining the solutions over a frequency range. Computations have to be repeated for each
frequency to obtain the complete frequency response over a frequency range. For frequency
dependent systems such as resonant structures, the number of frequencies required to capture the
resonance can be very large. If the problem size is large, total CPU time to compute all the
frequencies can be highly prohibitive. To overcome this problem, a technique called Asymptotic
Waveform Evaluation(AWE) is proposed. Initially, this technique was applied to timing analysis
of VLSI circuits[3,4] and  extended later to finite element analysis for microwave circuits[5].

The AWE technique, basically makes use of the Taylor series expansion of a matrix
equation which is common in all frequency domain techniques. The coefficients of the Taylor
Series (called ‘moments’, not to be confused with moments in Method of Moments) are evaluated
using frequency derivatives of the original system matrix. In this work, we derive the expressions
for evaluating the AWE moments and discuss the validity of AWE over a frequency band. Also,
as an illustration, the Electric Field Integral Equation (EFIE) will be considered to compute the
AWE moments.

The AWE technique used with a single expansion frequency may not always produce
accurate results over a desired frequency range. Once the desired frequency range is fixed,
techniques such as Complex Frequency Hopping(CFH)[6] can be used to accurately predict the
frequency response over the entire frequency range. CFH involves considering multiple
expansion frequency points for applying AWE and checking the accuracy of the response.

The organization of the rest of the paper is as follows. In section 2, the derivation of AWE
moments for any system matrix (resulting from a frequency domain technique) is given. An
application to the EFIE is also discussed.  Section 3 discusses the accuracy of single frequency
AWE and possible application of CFH for accurate prediction of frequency response over a
desired frequency range. Numerical results of RCS frequency response of a square plate are
presented. These results are compared with the computations done at each frequency point to
validate the analysis presented in this paper. Section 4 concludes the paper with remarks on the
advantages and limitations of the current technique.
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2. Derivation of AWE moments

Any frequency domain technique such as MoM or FEM depends on the solution of the
matrix equation

(1)

where  is a square matrix of the order N (number of unknowns in the frequency domain

technique) calculated at the frequency corresponding to, the wave number. Similarly  is

the excitation vector and  is the solution vector at the same frequency. The AWE technique

approximates the frequency response by expanding  (where  is the wave number

corresponding to any frequency within the frequency range) in a Taylor series around .

(2)

where  is thenth derivative ofx(k) evaluated at .
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At ;

(6)

Differentiating equation (5) with respect tok

(7)

Evaluating equation (7) at , the moment  is given by

(8)

Differentiating equation (7) with respect tok again;

(9)

Evaluating equation (9) at , the moment  is given by

(10)

From equations (8) and (10), a recursive relationship can be written for evaluating the moments
as

(11)

where the Kronecker delta  is defined as

(12)
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Once the moments are evaluated, the solution vector at any frequency (within the
frequency range of accuracy) can be found by equation (4). It can be noticed from the equations
that if the inverse of matrix  is calculated once, it can be repeatedly used to compute the

moments. In practice, instead of finding the inverse of matrix  a LU factorization of the

matrix is done once and all the moments are evaluated by computationally less intensive forward/
backward substitution.

Application of AWE to EFIE:

The Electric Field Integral Equation is widely used in MoM, for radar cross section
analysis of complex perfect Electric Conductor(PEC) bodies. The analysis involves solving the
following matrix equation:

(13)

where

                                                - (14)

and

(15)

 is the current distribution over the surface and is the testing function.  is the incident plane

wave. For a subdomain approach, the surface integrals are evaluated over the surfaces of the
subdomains. For more details on subdomain MoM using EFIE, the reader is referred to [7].

Applying AWE to the equation (13),  is expanded in Taylor series as
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(17)

 is theqth derivative with respect tok, of Z(k) given in equation (14) and evaluated at

. Similarly  is thenth derivative with respect tok, of V(k) given in equation (15).

After performing a number of differentiations, one can show that the explicit representation of

 is given by

                       - (18)

where the permutation functionP(q,p) is defined as[8]

(19)

Once the moments are obtained, the current distribution can be obtained for different frequencies
within the frequency range of accuracy using the equation (16). The Radar Cross Section is
obtained using the current distribution on the PEC surface.

3. Numerical Results

The AWE technique described above is  implemented in a method of moments code to
obtain the RCS frequency response of a square plate. Figures 1 and 2 show the frequency
response of 1cmX1cm square plate over two different frequency bands for H-polarization with
normal incidence. In figure 1, the frequency response at the center frequency 30GHz is shown
with a frequency range of GHz. Even with two or three moments, we can see a very good
agreement over the complete frequency band. In figure 2, the frequency response at the center
frequency 12GHz is shown with a frequency range ofGHz. The first, third and sixth order
AWE solutions are plotted. As it can be seen from figure 2, third order AWE showed a reasonable
agreement in the frequency range of GHz, the sixth order gave a very good agreement.
These results validate the application of AWE for electromagnetic analysis. Many more examples
along with storage and timing requirements are presented in [9] to show the flexibility of AWE
technique in different EM environments.
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As it can be seen from the two examples presented, the frequency range and accuracy
depends on the number of moments used and also the electromagnetic phenomena occurring in a
particular problem. By numerical experimentation, it was also noted that after certain number of
moments, the frequency range of AWE has not increased further. Methods such as Complex
Frequency Hopping(CFH) can be implemented to estimate the error in AWE predictions and
hence improve the reliability of the calculations and also increase the frequency range[6].

4. Concluding Remarks

Application of AWE for numerical electromagnetic analysis is considered. The moments
required in the AWE analysis are derived and explicit expressions are presented. Application of
AWE for an electric field integral equation for RCS frequency response is demonstrated. A
numerical example is considered to validate the analysis presented. AWE seems to be a viable
approach to obtain the frequency response of an electromagnetic system through a frequency
domain analysis. By expanding at many frequency points, a RCS over a wide frequency range can
be obtained. Computationally, AWE increases the storage and CPU time requirements, compared
to single point calculations. But considering the number of frequency points required to compute
the frequency response of a system, AWE provides much better performance. The accuracy and
frequency range of AWE can be further improved by implementing techniques such as Complex
Frequency Hopping(CFH)[6].
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Figure 1 Frequency response of a square plate (1cmX1cm). Center frequency 30GHz (H-
Polarized, normal incidence)
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Figure 2 Frequency response of a square plate (1cmX1cm). Center frequency 12GHz (H-
Polarized normal incidence).
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